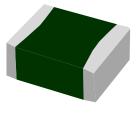


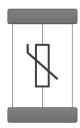
CMS Power-lines Protection Series (CMS-P)

Descriptions

The Ceramic Micro-Surge Protection Device (CMS) is manufactured from semiconducting ceramics which offer rugged protection and excellent transient energy absorption in a small SMD package. These devices are designed to suppress a variety of transient events, including those speified in IEC61000-4-2, IEC61000-4-5 and other standards used for Electromagnetic Compliance (EMC).

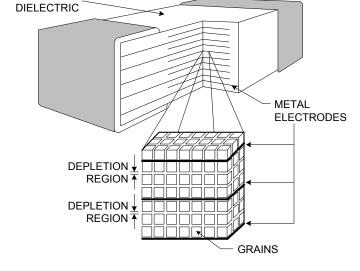

These devices are available in ceramic leadless chip form, eliminating lead inductance and assuring fast speed of response to transient surges. In addition, The CMS transient suppressors have temperature independent suppression characteristics, affording protection from -55°C to 125°C, which is much better than suppressors based on silicon semiconductor technology.

The CMS-P Series is specially designed for power-lines protection applications. It features a very high current protection capability with a very small size, also a very fast response thus a ultra low clamping voltage. These characteristics make CMS-P Series devices the best replacement of TVS and improvement of metal oxide (MOV) in high working voltage applications.


Features

- Multi-Layers Construction Provides Higher Power Dissipation
- Surge Current Capability: 1000A (@8/20µs)
- Better than UL94V-0 Flammability Rating
- No Temperature Derating up to 125°C Ambient
- Reliable ESD Protection up to 30kV acc. to IEC61000-4-2
- Inherent Bi-directional Clamping
- SMD type Body size 1210
- "Zero" Lead Inductance
- Very low Camping Voltage
- RoHS compliant

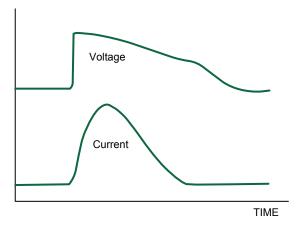
FIRED CERAMIC


Top View (1210)

Circuit diagram

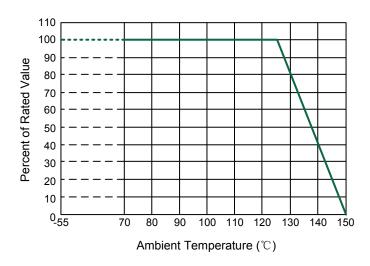
Applications

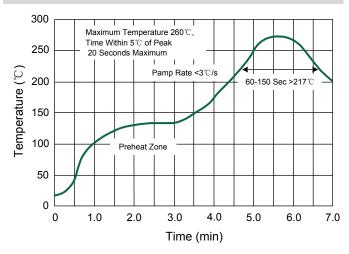
- LED
- Surge protection for IEC/EN 61547
- Surge protection for IEC61000-4-5
- EFT protection for IEC 61000-4-4 (Level 4)
- ESD protection for IEC 61000-4-2 (Level 4)

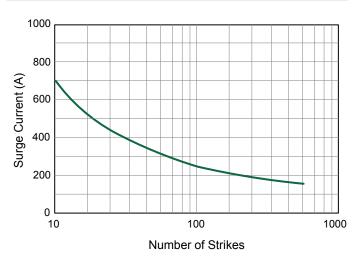

Multilayer Internal Construction

Device Ratings and Specifications

Parameter	Symbol Condition		Value	Unit
Maximum Allowable Continuous AC Voltage	V _{M(AC)}		60	V
Maximum Allowable Continuous DC Voltage	V _{M(DC)}		85	V
Nominal Varistor Voltage	Vv	1mA	100(±10%)	V
Maximum Clamping Voltage (8/20µs)	Vclamp	2.5A	180	V
Maximum Peak Current (8/20µs)	IPeak		1000	А
Non-linear Coefficient	α		>15	
Response Time	т		<1	ns
Operating Ambient Temperature			-55 ~ +125	°C
Storage Temperature			-55 ~ +150	°C


Surge Response - 8/20µs waveform


Pulse Waveform - 8/20µs waveform $T_r = 1.25 \times T = 8µs$ $T_d = 20µs$ TIME TIME


Current, Energy and Power Derating Curve

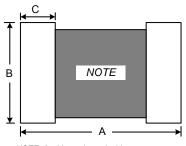
Lead-free Re-flow Solder Profile

Repetitive Pulse Capability

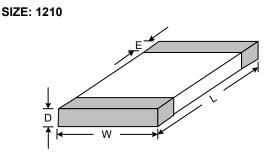
Hand Soldering

Resistance to soldering heat-high temperature resistance: 260°C, 10sec and 3 times.

In hand soldering of the CMS Devices. Large temperature gradient between preheated the CMS Devices and the tip of soldering iron may cause electrical failures and mechanical damages such as crackings or breaking of the devices. The soldering shall be carefully controlled and carried out so that the temperature gradient is kept minimum with following recommended conditions for hand soldering.

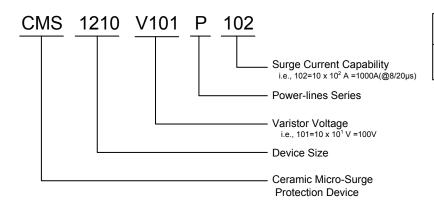

Recommended Soldering Condition 1

- Solder: 0.12~0.18mm Thread solder (Sn96.5:Ag3.5) with soldering flux in the core. Rosin-based and non-activated flux is recommended.
- Preheating: The CMS Devices shall be preheated so that Temperature Gradient between the devices and the tip of soldering iron is 150°C or below.
 Soldering Iron: Rated Power of 20w max with 3mm soldering tip in diameter.
- Soldering Iron: Rated Power of 20w max with 3mm soldering tip in diameter. Temperature of soldering iron tip 380 ℃ max, 3-5sec (The required amount of solder shall be melted in advance on the soldering tip.)
- Cooling: After soldering. The CMS Devices shall be colled gradually at room ambient temperature.

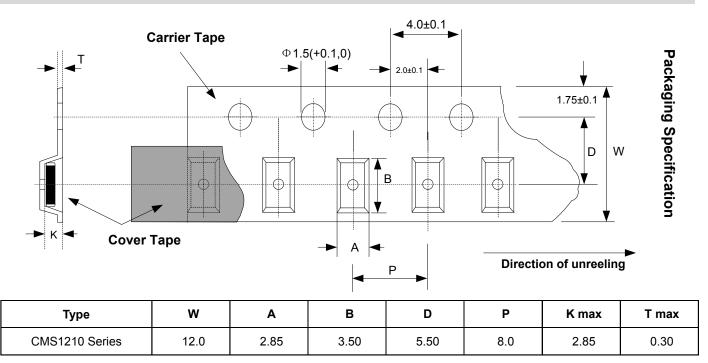

Recommended Soldering Condition 2 (Without preheating)

Solder iron tip shall not directly touch to ceramic dielectrics.
 Solder iron tip shall be fully preheated before soldering while soldering iron tip to the external electrode of CMS Devices.

Product Dimensions


NOTE: Avoid metal runs in this area

Symbol	А	В	С	D(max.)	E	L	W
Inch	0.173 ~ 0.256	0.087 ~ 0.118	0.051 ~ 0.079	0.102	0.010 ~ 0.030	0.132 ±0.012	0.100 ± 0.010
Millimeter	4.40 ~ 6.50	2.20 ~ 3.00	1.30 ~ 2.00	2.60	0.25~ 0.75	3.30 ±0.30	2.50 ± 0.25


Part Numbering System

Order Information

Device	Quantity	Reel Size
CMS1210 Series	1500 pcs	13 Inch (330mm)

Tape and Reel Specifications

Reel Dimension

Tymo	Dimensions(mm)			i)
Туре	Spec.	Α	W	С
CMS1210 Series	13"*12mm	330	12.4+2.0/-0.0	100

Environmental Reliability Test

ltem	Requirment	Test Condition
High Temperature Storage	 Breakdown voltage change: within ±10% No mechanical damage 	 Temperature: 150 ± 2°C Time: 1000 ± 2 hours Test after placing in ambient temperature for 24 hours
Low Temperature Storage	 Breakdown voltage change: within ±10% No mechanical damage 	 Temperature: -55± 2°C Time: 1000 ± 2 hours Test after placing in ambient temperature for 24 hours
Temperature Cycle	 Breakdown voltage change: within ±10% No mechanical damage 	 Step 1: -40 ± 3°C; time: 30 ± 3min Step 2: 25°C; time: 1 hour Step 3: 125 ± 3°C; time: 30 ± 3min Step 4: 25°C; time: 1 hour Number of cycle: 5 times Test after placing in ambient temperature for 24 hours
High Temperature Load	 Breakdown voltage change: within ±10% No mechanical damage 	 Temperature: 125 ± 2°C Rated working voltage applied Time: 1000 ± 2 hours Test after placing in ambient temperature for 24 hours
Damp Heat Load / Humidity Load	 Breakdown voltage change: within ±10% No mechanical damage 	 Temperature: 60 ± 2°C Humidity: 90-95% RH Rated working voltage applied Time: 1000 ± 2 hours Test after placing in ambient temperature for 24 hours

© 2017 Boarden Electronics Ltd. Specifications are subject to change without notice.

Website: www.boarden.com.cn Tel: 86-21-61401058 Fax: 86-21-61730538